Demo Algo   C++   C#   Demo   JS   Py   SQL   Stat   TA

Demo

CODE ARTICLE

int euclid_gcd(int m, int n)
{
    if (m < n) {
        int temp = m;
        m = n;
        n = temp;
    }
    while (n != 0) {
        int temp = m % n;
        m = n;
        n = temp;
    }
    return m;
}

PICS ARTICLE

TEXT ARTICLE

TITLE SECTION

Title

LINK SECTION

TEXT SECTION Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

FORMULAS (MathJax)

The Lorenz Equations

\[\begin{matrix} \dot{x} & = & \sigma(y-x) \\ \dot{y} & = & \rho x - y - xz \\ \dot{z} & = & -\beta z + xy \end{matrix} \]

The Cauchy-Schwarz Inequality

\[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \]

A Cross Product Formula

\[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix} \]

The probability of getting \(k\) heads when flipping \(n\) coins is:

\[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]

An Identity of Ramanujan

\[ \frac{1}{(\sqrt{\phi \sqrt{5}}-\phi) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]

IPYNB ARTICLE

Demo Algo   C++   C#   Demo   JS   Py   SQL   Stat   TA