CODE ARTICLE
int euclid_gcd(int m, int n)
{
if (m < n) {
int temp = m;
m = n;
n = temp;
}
while (n != 0) {
int temp = m % n;
m = n;
n = temp;
}
return m;
}
PICS ARTICLE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TEXT ARTICLE
TITLE SECTION
Title
LINK SECTION
TEXT SECTION Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
FORMULAS (MathJax)
The Lorenz Equations
\[\begin{matrix} \dot{x} & = & \sigma(y-x) \\ \dot{y} & = & \rho x - y - xz \\ \dot{z} & = & -\beta z + xy \end{matrix} \]
The Cauchy-Schwarz Inequality
\[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \]
A Cross Product Formula
\[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix} \]
The probability of getting \(k\) heads when flipping \(n\) coins is:
\[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]
An Identity of Ramanujan
\[ \frac{1}{(\sqrt{\phi \sqrt{5}}-\phi) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
IPYNB ARTICLE